Alzheimer's presenilin 1 mutations impair kinesin-based axonal transport.
نویسندگان
چکیده
Several lines of evidence indicate that alterations in axonal transport play a critical role in Alzheimer's disease (AD) neuropathology, but the molecular mechanisms that control this process are not understood fully. Recent work indicates that presenilin 1 (PS1) interacts with glycogen synthase kinase 3beta (GSK3beta). In vivo, GSK3beta phosphorylates kinesin light chains (KLC) and causes the release of kinesin-I from membrane-bound organelles (MBOs), leading to a reduction in kinesin-I driven motility (Morfini et al., 2002b). To characterize a potential role for PS1 in the regulation of kinesin-based axonal transport, we used PS1-/- and PS1 knock-inM146V (KIM146V) mice and cultured cells. We show that relative levels of GSK3beta activity were increased in cells either in the presence of mutant PS1 or in the absence of PS1 (PS1-/-). Concomitant with increased GSK3beta activity, relative levels of KLC phosphorylation were increased, and the amount of kinesin-I bound to MBOs was reduced. Consistent with a deficit in kinesin-I-mediated fast axonal transport, densities of synaptophysin- and syntaxin-I-containing vesicles and mitochondria were reduced in neuritic processes of KIM146V hippocampal neurons. Similarly, we found reduced levels of PS1, amyloid precursor protein, and synaptophysin in sciatic nerves of KIM146V mice. Thus PS1 appears to modulate GSK3beta activity and the release of kinesin-I from MBOs at sites of vesicle delivery and membrane insertion. These findings suggest that mutations in PS1 may compromise neuronal function by affecting GSK-3 activity and kinesin-I-based motility.
منابع مشابه
Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport.
Within axons, molecular motors transport essential components required for neuronal growth and viability. Although many levels of control and regulation must exist for proper anterograde and retrograde transport of vital proteins, little is known about these mechanisms. We previously showed that presenilin (PS), a gene involved in Alzheimer's disease (AD), influences kinesin-1 and dynein functi...
متن کاملPresenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo.
Neurons and other cells require intracellular transport of essential components for viability and function. Previous work has shown that while net amyloid precursor protein (APP) transport is generally anterograde, individual vesicles containing APP move bi-directionally. This discrepancy highlights our poor understanding of the in vivo regulation of APP-vesicle transport. Here, we show that re...
متن کاملDisruption of Axonal Transport and Neuronal Viability by Amyloid Precursor Protein Mutations in Drosophila
We tested the hypothesis that amyloid precursor protein (APP) and its relatives function as vesicular receptor proteins for kinesin-I. Deletion of the Drosophila APP-like gene (Appl) or overexpression of human APP695 or APPL constructs caused axonal transport phenotypes similar to kinesin and dynein mutants. Genetic reduction of kinesin-I expression enhanced while genetic reduction of dynein ex...
متن کاملThe novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport.
Alcadeinalpha (Alcalpha) is an evolutionarily conserved type I membrane protein expressed in neurons. We show here that Alcalpha strongly associates with kinesin light chain (K(D) approximately 4-8x10(-9) M) through a novel tryptophan- and aspartic acid-containing sequence. Alcalpha can induce kinesin-1 association with vesicles and functions as a novel cargo in axonal anterograde transport. JN...
متن کاملCalsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production
Understanding the mechanisms that control processing of the amyloid precursor protein (APP) to produce amyloid-β (Aβ) peptide represents a key area of Alzheimer's disease research. Here, we show that siRNA-mediated loss of calsyntenin-1 in cultured neurons alters APP processing to increase production of Aβ. We also show that calsyntenin-1 is reduced in Alzheimer's disease brains and that the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2003